
Constructors 
What is the use of Constructor ? 

 

 The main use of constructors is to initialize  

objects. 

 The function of initialization is automatically 

carried out by the use of a special member 

    function called a constructor. 

By Hardeep Singh 



General Syntax of Constructor 

 Constructor is a special member function that 

    takes the same name as the class name. 

 The syntax generally is as given below: 

    <class name> { arguments}; 

 The default constructor for a class X has the form 

    X::X() 

 

 

 

By Hardeep Singh 



Cont…… 
 The constructor is automatically called when an object is 

created.  

 

 There are several forms in which a constructor can take its 

shape namely: 

Default Constructor 

Parameterized Constructors 

Copy constructor 

By Hardeep Singh 



Default Constructor: 
 This constructor has no arguments in it. 

  Default Constructor is also called as no argument 

constructor. 

Example: 

class creature 

{ 

      private: 

      int yearofBirth; 

      public: 

 By Hardeep Singh 



Cont….. 
 creature() 

           {   

                       cout<<“Contructor   called";                       

                       } 

            }; 

      int main() 

      {    

         creature obj;    

          getch(); 

          return 0; 

         } 
By Hardeep Singh 



Parameterized Constructors: 

 A parameterized constructor is just one that has 

parameters specified in it.  

 We can pass the arguments to constructor function 

when object are created.  

  A constructor that can take arguments are called  

parameterized constructors. 

By Hardeep Singh 



Example: 
class Creature {     

private: 

   int yearOfBirth; 

public: 

  // … 

  Creature(int year) {         //Parameterized Constructor 

      yearOfBirth = year; 

      }    

}; 

 
By Hardeep Singh 



Copy Constructor: 

 Copy Constructor is used to declare and initialize an object 

from another object. 

 For example the statement: 

    abc c2(c1); 

    would define the object c2 and at the same time initialize it 

to the value of c1. 

 The process of initializing through a copy constructor is 

known as copy initialization. 

By Hardeep Singh 



Example: 
class abc 
{ 
      int a, b; 
      public: 
        abc(int x, int y) 
          { 
                a = x; 
                b = y; 
                } 
                abc::abc(abc &p) 
                { 
                             a = p.a; 
                             b = p.b; 
                } 

 By Hardeep Singh 



Cont…… 
 void showdata() 
        { 
             cout << a << " " << b << endl; 
        } 
}; 
  
int main() 
{ 
    abc c1(10, 20); 
    abc c2(c1); 
    c1.showdata(); 
    c2.showdata(); 
    getch(); 
} 

By Hardeep Singh 



Default Arguments 
 Default argument is an argument to a function  that a 

programmer is not required to specify.  

 

 C++  allow the programmer to specify default arguments 

that always have a value, even if one is not specified 

when calling the function.  

 

 For example, in the following function declaration: 

    int MyFunc(int a, int b, int c=12); 

 
By Hardeep Singh 



Cont…… 
 The programmer may call this function in two ways: 

      result = MyFunc(1, 2, 3); 

      result = MyFunc(1, 2); 

  

 In the first case the value for the argument called c is specified as 

normal. In the second one, the argument is omitted, and the 

default value of 12 will be used instead. 

 

 It is possible to define constructors with default arguments. 

By Hardeep Singh 



Some important points about 
constructors: 

 Automatically called when an object is created. 

 We can define our own constructors  

 A constructor takes the same name as the class 

name. 

 We can’t define a constructor in the private 

section. 

By Hardeep Singh 



Cont….. 

 No return type is specified for a constructor. 

 Constructor must be defined in the public. The 

constructor must be a public member. 

 Overloading of constructors is possible. 

 If an object is copied from another object then the 

copy constructor is called. 

By Hardeep Singh 



Destructors 

 Destructors are special member functions. 

 Release dynamic allocated memory.  

 Destructors are automatically named. 

 Takes the same name of class name. 

By Hardeep Singh 



General Syntax of Destructors 

 

 

~ classname(); 

 

By Hardeep Singh 



Some important points about 
destructors: 

 Take the same name as class name. 

 Defined in the public. 

 Destructors cannot be overloaded. 

 No return type is specified. 

 

By Hardeep Singh 



Example: 
class creature 

{ 

      private: 

      int yearofBirth; 

      public: 

             creature() 

             {   

                       yearofBirth=1970; 

                       cout<<"constructure called"<<endl; 

                       } 

             ~creature() 

             { 

                        cout<<"destructure called"<<endl; 

                        } 

      }; 

By Hardeep Singh 



Cont…… 
 int main() 

    {     

          cout<<"main start"<<endl;  

          { 

                creature obj;    

          } 

          cout<<"main end"<<endl;  

          getch(); 

          return 0; 

          } 

By Hardeep Singh 



By Hardeep Singh 


