
Constructors
What is the use of Constructor ?

 The main use of constructors is to initialize

objects.

 The function of initialization is automatically

carried out by the use of a special member

 function called a constructor.

By Hardeep Singh

General Syntax of Constructor

 Constructor is a special member function that

 takes the same name as the class name.

 The syntax generally is as given below:

 <class name> { arguments};

 The default constructor for a class X has the form

 X::X()

By Hardeep Singh

Cont……
 The constructor is automatically called when an object is

created.

 There are several forms in which a constructor can take its

shape namely:

Default Constructor

Parameterized Constructors

Copy constructor

By Hardeep Singh

Default Constructor:
 This constructor has no arguments in it.

 Default Constructor is also called as no argument

constructor.

Example:

class creature

{

 private:

 int yearofBirth;

 public:

 By Hardeep Singh

Cont…..
 creature()

 {

 cout<<“Contructor called";

 }

 };

 int main()

 {

 creature obj;

 getch();

 return 0;

 }
By Hardeep Singh

Parameterized Constructors:

 A parameterized constructor is just one that has

parameters specified in it.

 We can pass the arguments to constructor function

when object are created.

 A constructor that can take arguments are called

parameterized constructors.

By Hardeep Singh

Example:
class Creature {

private:

 int yearOfBirth;

public:

 // …

 Creature(int year) { //Parameterized Constructor

 yearOfBirth = year;

 }

};

By Hardeep Singh

Copy Constructor:

 Copy Constructor is used to declare and initialize an object

from another object.

 For example the statement:

 abc c2(c1);

 would define the object c2 and at the same time initialize it

to the value of c1.

 The process of initializing through a copy constructor is

known as copy initialization.

By Hardeep Singh

Example:
class abc
{
 int a, b;
 public:
 abc(int x, int y)
 {
 a = x;
 b = y;
 }
 abc::abc(abc &p)
 {
 a = p.a;
 b = p.b;
 }

 By Hardeep Singh

Cont……
 void showdata()
 {
 cout << a << " " << b << endl;
 }
};

int main()
{
 abc c1(10, 20);
 abc c2(c1);
 c1.showdata();
 c2.showdata();
 getch();
}

By Hardeep Singh

Default Arguments
 Default argument is an argument to a function that a

programmer is not required to specify.

 C++ allow the programmer to specify default arguments

that always have a value, even if one is not specified

when calling the function.

 For example, in the following function declaration:

 int MyFunc(int a, int b, int c=12);

By Hardeep Singh

Cont……
 The programmer may call this function in two ways:

 result = MyFunc(1, 2, 3);

 result = MyFunc(1, 2);

 In the first case the value for the argument called c is specified as

normal. In the second one, the argument is omitted, and the

default value of 12 will be used instead.

 It is possible to define constructors with default arguments.

By Hardeep Singh

Some important points about
constructors:

 Automatically called when an object is created.

 We can define our own constructors

 A constructor takes the same name as the class

name.

 We can’t define a constructor in the private

section.

By Hardeep Singh

Cont…..

 No return type is specified for a constructor.

 Constructor must be defined in the public. The

constructor must be a public member.

 Overloading of constructors is possible.

 If an object is copied from another object then the

copy constructor is called.

By Hardeep Singh

Destructors

 Destructors are special member functions.

 Release dynamic allocated memory.

 Destructors are automatically named.

 Takes the same name of class name.

By Hardeep Singh

General Syntax of Destructors

~ classname();

By Hardeep Singh

Some important points about
destructors:

 Take the same name as class name.

 Defined in the public.

 Destructors cannot be overloaded.

 No return type is specified.

By Hardeep Singh

Example:
class creature

{

 private:

 int yearofBirth;

 public:

 creature()

 {

 yearofBirth=1970;

 cout<<"constructure called"<<endl;

 }

 ~creature()

 {

 cout<<"destructure called"<<endl;

 }

 };

By Hardeep Singh

Cont……
 int main()

 {

 cout<<"main start"<<endl;

 {

 creature obj;

 }

 cout<<"main end"<<endl;

 getch();

 return 0;

 }

By Hardeep Singh

By Hardeep Singh

